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FOREWORD 
 

The reason for separating one report into two is based on my personal style of learning since the late 

1960’s. I was and continue to be a very slow reader and typically read good reports and journal papers 

two, three or more times. In each reading, I highlight and underline what I considered the key items that 

I wanted to remember and use in my UCLA classes, talks and future technical papers. 

Nowadays, I type or scan the key points of my reading and therefore have an electronic file that can be 

sent through the Internet or, as with this Supplement Report, shared with readers. In a small but 

important way this approach provides credit to the authors of the excellent work that went into the 

quotations. Also I find it to be an important education / transfer technology aid.  

This Supplemental Report provides the quotations that I and Dr. Simsir selected to share in the context of 

this report. 

We have some more work to do on this Supplemental Report over the next two weeks so please pass on 

to us any questions that you wish us to consider. With your help we can advance the application of 

Performance Based Design and reward innovation. 

Gary C. Hart 

Principal Emeritus, Thornton Tomasetti  
and 

Professor Emeritus, University of California, Los Angeles 
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APPENDIX 1 FEMA 306: QUOTATIONS 
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APPENDIX 2 FEMA P695/ATC 63 and FEMA P795/ATC 63-1 REPORTS: 

QUOTATIONS 
 

J.1 ATC-63 Sources of Uncertainty 
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APPENDIX 3 NIST GCR 14-917-31 SEISMIC DESIGN OF SPECIAL 

REINFORCED MASONRY WALLS 
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2. The Use of Reinforced Masonry Structural Walls in Buildings 
 
2.1 Use of Special Reinforced Masonry Shear Walls 
 
“Special reinforced masonry shear walls (“special walls”) are required to meet the most restrictive 
material and prescriptive detailing requirements. Accordingly, they are permitted by ASCE 7 to be used 
in any SDC per the judgment of the structural designer. Special walls are required to be used for 
reinforced masonry walls in SDC D, E, or F.” (NIST GCR 14-917-31, pg. 4) 
 
“Special walls are assigned the highest response modification factor, R, of any of the masonry shear wall 
types.” (NIST GCR 14-917-31, pg. 4) 
 
“… special reinforced masonry shear walls are assigned an R factor of 5; for special reinforced masonry 
wall building frame systems, R = 5.5 …” (NIST GCR 14-917-31, pg. 4) 
 
“… Inherent in the use of an R factor of 5 or greater is the presumption of ductile behavior, associated 
with the development of plastic hinges with stable inelastic rotation capacity. Stable plastic hinges are 
characterized by the development of strains well past yield in the flexural reinforcement before the 
occurrence of flexural strength degradation or shear failure occurs in the wall.” (NIST GCR 14-917-31, pg. 
4) 
 
“… given the wide variety of masonry wall types and configurations and the lack of control of the 
structural designer over these configurations in many cases, the designer should not assume that 
following the prescriptive requirements alone will necessarily ensure ductile, flexure-dominated 
behavior.” (NIST GCR 14-917-31, pg. 4) 
 

(NIST GCR 14-917-31, pg. 4) 
 
“Typical wall configurations are shown in elevation in Figure 2-3. Squat wall elements like those in 
Figures 2-3(a) and 2-3(b) with aspect ratios (height /plan length) of one or less are quite common, and 
they are often much stronger than required.” (NIST GCR 14-917-31, pg. 5) [Underline by Hart] 
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(NIST GCR 14-917-31, pg. 5) 
 
“Tall cantilever walls or cores (Figure 2-3(e)) are the configuration most likely to display the flexure-
dominated behavior that meets the intent of the code for special walls.” (NIST GCR 14-917-31, pg. 6) 
 

(NIST GCR 14-917-31, pg. 6) 
 

 (NIST GCR 14-917-31, pg. 6) 
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3. Design Principles for Special Masonry Shear Walls 
 
3.1 Allowable Stress Design, Strength Design, and Limit Design  
 
“… In this Guide, the emphasis is on SD because TMS 402 addresses ductility requirements relevant to 
special walls more explicitly for SD than ASD.” (NIST GCR 14-917-31, pg. 8) 
 
“The 2013 edition of TMS 402 also includes a new Appendix C on Limit Design …” (NIST GCR 14-917-31, 
pg. 8) 
 
“… Limit Design allows the structural designer to explicitly take into account the anticipated plastic 
mechanism of the wall system, to control the aspect ratios and detailing of wall elements to achieve the 
best behavior possible, and to detail the elements in accordance with the resulting flexure- or shear-
dominated behavior.” (NIST GCR 14-917-31, pg. 8) 
 
3.2 Flexure-Dominated versus Shear-Dominated Walls  
 
“A reinforced masonry wall system is composed of wall segments, each of which can be categorized as 
either flexure-dominated or shear-dominated. A flexure-dominated wall segment is one whose inelastic 
response is dominated by deformations resulting from the tensile yielding of flexural reinforcement. A 
shear-dominated segment is one whose inelastic response is dominated by diagonal shear (tension) 
cracks.” (NIST GCR 14-917-31, pg. 8) [Underline by Hart] 
 
“… Shear-dominated elements are generally brittle, with failure characterized by diagonal shear cracks.” 
(NIST GCR 14-917-31, pg. 9) 
 
“… when a special shear wall has a shear-span-to-depth ratio less than one or a high axial load, the same 
combination of prescriptive requirements may still result in a wall that is shear-dominated and brittle. 
This is often the case for low-rise masonry buildings, which constitute most masonry construction in the 
United States.” (NIST GCR 14-917-31, pg. 9) [Underline by Hart] 
 
“… Vflexure is the shear demand associated with the expected flexural capacity, which is 1.25Mn divided by 
the wall height, with Mn being the nominal moment capacity, and Vshear is the nominal shear strength Vn 
calculated according to TMS 402.” (NIST GCR 14-917-31, pg. 9) [Underline by Hart] 
 
“… shear-dominated behavior becomes more likely as the amount of vertical (longitudinal) 
reinforcement increases, the amount of transverse reinforcement decreases, the wall length increases, 
or the axial compression force increases.” (NIST GCR 14-917-31, pg. 9)  
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(NIST GCR 14-917-31, pg. 9) 
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(NIST GCR 14-917-31, pg. 10) 
 
“Figure 3-3 is based on a simple cantilever wall loaded at the top. In a real structure, numerous effects 
such as higher-mode effects or axial forces and moments induced by coupling elements can amplify the 
shear that can be developed, corresponding to the moment capacity of the wall beyond that 
represented here.” (NIST GCR 14-917-31, pg. 11) [Underline by Hart] 
 
“To protect a special wall against shear failure caused by possible flexural overstrength, TMS 402 
§7.3.2.6.1.1 requires that the design shear strength, φVn , exceed the shear corresponding to the 
development of the nominal moment capacity by a factor of at least 1.25. The code states that the 
nominal shear strength, Vn, need not exceed 2.5 times the factored shear demand Vu…” (NIST GCR 14-
917-31, pg. 11) [Underline by Hart] 
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(NIST GCR 14-917-31, pg. 11) 
 
“For squat walls with Mu/(Vudv) < 1.0, TMS 402 §9.3.3.5.4 allows the designer to design the wall for 
amplified forces–effectively, the forces associated with elastic response–in which case there is no upper 
limit to the maximum flexural tensile reinforcement.” (NIST GCR 14-917-31, pg. 12) 
 
“… the ASD provisions in TMS 402 §8.3.4.4 have no maximum reinforcement limitations for shear walls 
with M/(Vdv) ≤ 1.0 and an axial load ratio P/f ’mAn ≤ 0.05.” (NIST GCR 14-917-31, pg. 12) 
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APPENDIX 4 PROFESSIONAL PAPERS: QUOTATIONS 
 

SHEAR DESIGN OF STRUCTURAL WALL 
(ACI 318-11 from Wallace, et al paper) 

 

Nominal Shear Strength n uV V    

 

'

n cv c c t yV A f f    
 

  

 
'

cf , yf  = Specified Compressive Strength and Yield Strength 

c  = Coefficient defining the relative contribution of concrete strength to nominal wall shear 

strength 

t  = Ratio of area of transverse reinforcement to gross concrete area perpendicular to that 

reinforcement 
 

Now consider c   

 

c = 3 for   1.5hw
w

   

 

  1.5hw
w

 is   2

1.5 3
hww hw

 
   

 
  

 

Therefore, if the wall length is equal to or greater than (2/3) the height of the wall, then c = 3. 

 

A limit of the wall being longer than the height, i.e. w > hw is clearly greater than (2/3), i.e. it is 1 so 

the wall is classified as an c = 3 wall. 
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INTERACTIVE INTERFACE FOR INCREMENTAL DYNAMIC ANALYSIS PROCEDURE 
(IIIDAP) USING DETERIORATING SINGLE DEGREE OF FREEDOM SYSTEMS 

(Quotations) 
 

By 
 

Dimitrios G. Lignos, Ph.D. 
 

March, 2010 
 

INCREMENTAL DYNAMIC ANALYSIS PROCEDURE 
 
“Interactive Interface for Incremental Dynamic Analysis Procedure (IIIDAP) software is a generic single 
degree of freedom analysis (SDOF) software for seismic evaluation of deteriorating and non-
deteriorating SDOF systems. The software uses deteriorating hysteretic models that can adequately 
capture all the important deterioration modes of a component and is able to simulate collapse of SDOF 
systems under seismic loading.” (Interactive Interface for Incremental Dynamic Analysis Procedure, 
IIIDAP, pg. 5) 
 
“The modified Ibarra – Krawinkler deterioration model is defined by a backbone curve shown in Figure 
2. The backbone curve defines the boundaries within which the hysteretic response of the 
component/structure is confined.” (Interactive Interface for Incremental Dynamic Analysis Procedure, 
IIIDAP, pg. 6) 
 

 
(Interactive Interface for Incremental Dynamic Analysis Procedure, IIIDAP, pg. 6) 
 
“The quantities F and δ are generic force and deformation quantities. For plastic hinge regions F = M and 
δ = θ. For SDOF configurations such as wall structures F is the story shear force and the deformation 
quantity δ is the story drift ratio δ /h, denoted θ from here on. … The ultimate deformation capacity δu is 
usually associated with a sudden failure mode or with behavior that can no longer be relied upon. The 
parameters needed to define the backbone curve are shown in Figure 2.” (Interactive Interface for 
Incremental Dynamic Analysis Procedure, IIIDAP, pg. 6) 
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“The Interactive Interface for Incremental Dynamic Analysis procedure has a library of ground motion 
sets available for seismic performance evaluation of SDOF systems. The two existing ground motion sets 
are described as follows, 
 

o A set of 40 ground motions noted as LMSR-N with magnitude 6.5 ≤ Mw ≤ 7.5 and rupture 
distance13.0km ≤ R ≤ 30km. Detailed information on this ground motion set is presented in 
Medina and Krawinkler, (2003). 

o A set of 44 ground motions denoted as FEMA P695 set that represents far field ground motions 
normalized using the FEMA P695 Appendix A methodology. All ground motions have been 
scaled to represent a scale factor of 1.0. Detailed information on this ground motion record set 
can be found in FEMA P695 and Haselton and Deierlein, (2007).” (Interactive Interface for 
Incremental Dynamic Analysis Procedure, IIIDAP, pg. 10) 

 
“Incremental dynamic analysis (IDA) is a parametric analysis method that is utilized to estimate seismic 
performance of structural systems. The procedure involves subjecting the structural model to a set of 
ground motions, each scaled to multiple levels of ground motion intensity in order to produce response 
curves (IDA curves) parameterized versus intensity level (see Vamvatsikos and Cornell, 2002). The IDA 
curve relates a selected intensity measure (IM) of the selected ground motion set with an engineering 
demand parameter (EDP) of the structural system such as relative displacement, story drift ratio or 
absolute acceleration. The IDA also known as “dynamic pushover” involves a series of dynamic non-
linear time history analysis performed under scaled acceleration histories whose IMs are ideally selected 
to cover the whole range from elastic to nonlinear and finally to collapse of the structure.” (Interactive 
Interface for Incremental Dynamic Analysis Procedure, IIIDAP, pg. 11) 
 
“Figure 6 illustrates a set of 40 IDA curves (i.e. 40 ground motion records) for an SDOF wall structure 
with a period of 0.30sec. When the curve becomes flat the structural system loses its lateral resistance, 
i.e. collapse occurs.” (Interactive Interface for Incremental Dynamic Analysis Procedure, IIIDAP, pg. 11) 
 

 
(Interactive Interface for Incremental Dynamic Analysis Procedure, IIIDAP, pg. 12) 
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QUOTATIONS – HYSTERETIC MODELS THAT INCORPORATE STRENGTH AND STIFFNESS 
DETERIORATION (2005 IBARRA, MEDINA, KRAWINKLER) 

 
EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS 
Earthquake Engng Struct. Dyn. 2005; 34:1489–1511 

 

 
 

“The cyclic deterioration in excursion i is defined by the parameter i  , which is given by the following 

expression: 
 

c

i
i i

t jj

E

E E


 
 
 
 

         (1) 

 

iE is the hysteretic energy dissipated in excursion i, jE  the hysteretic energy dissipated in all 

previous excursions through loading in both positive and negative directions, tE  the reference 

hysteretic energy dissipation capacity, t y yE F  . The parameter   expresses the hysteretic energy 

dissipation capacity as a function of twice the elastic strain energy at yielding  y yF  , it is calibrated 

from experimental results and can be different for each deterioration mode. Finally, c is the exponent 
defining the rate of deterioration. Rahnama and Krawinkler [7] suggest that a reasonable range for c is 
between 1.0 and 2.0. If the displacement history consists of constant amplitude cycles, a unit value for c 
implies an almost constant rate of deterioration. For the same displacement history, a value c = 2 slows 
down the rate of deterioration in early cycles and accelerates the rate of deterioration in later cycles 
[7].” (pgs. 1494-1495) 
 
2.3.1. Basic strength deterioration. “It is defined by translating the strain hardening branch toward the 
origin by an amount equivalent to reducing the yield strength to 
 

 , 11i s i iF F 

   and  , 11i s i iF F 

       (3) 
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/

iF  
and 

/

1iF  

 are the deteriorated yield strength after and before excursion i respectively.” (pg. 1495) 

[Underline by Hart] 
“A peak-oriented model is used in Figure 6(a) to illustrate the basic strength deterioration mode. At 

point 3, s  is calculated for first time and the yield strength on the negative side is reduced from yF 
 to 

1F 
.” (pg. 1495) [Underline by Hart] 

 

 
Figure 6. Individual deterioration modes, illustrated on a peak-oriented model: (a) basic strength 
deterioration… (pg. 1496) 
 
7. Rahnama M, Krawinkler H. Effects of soft soil and hysteresis model on seismic demands. John A. 
Blume Earthquake Engineering Center Report No. 108. Department of CEE, Stanford University, 1993. 
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APPENDIX 5 STRUCTURAL RELIABILITY CONSIDERATION 
 
The Reliability (Safety) Index used for the shear limit state in the Long Wall is 4.0 compared to 3.5. The 4.0 
value is at the upper end of the 3.5 to 4.0 range of values for the Reliability Index used is building code 
procedure development. The following quotation is from the concrete design book co-authored by Wight 
and MacGregor: 
  

“Based on current design practice,   is taken between 3 and 3.5 for ductile failures with average 

consequences of failure and between 3.5 and 4 for sudden failures or failures having serious 
consequences [2-7], [2-8].” 
 
[2-7] James G. MacGregor, “Safety and Limit States Design for Reinforced Concrete,” Canadian 
Journal of Civil Engineering, Vol. 3, No. 4, December 1976, pp. 484-513. 
 
[2-8] Bruce Ellingwood, Theodore Galambos, James MacGregor, and C. Allan Cornell, 
Development of a Probability Based Load Criterion for American National Standard A58, NBC 
Special Publication 577, National Bureau of Standards, US Department of Commerce, Washington, 
DC, June 1980, 222 pp. 

 

From LATB-1, define 
 

         (10.2-28) 
         (10.2-29) 

 
Defining the Capacity Reduction Factor as 
 

 exp 0.75 C                     (10.2-25) 

 
and the Load Amplification Factor as 
 

 exp 0.75 D                    (10.2-26) 

 
it follows that 
 

D C                     (10.2-27) 

 
 
It is worth going back now that the math is done and looking first at Equations (10.2-26) and 
(10.2-28) and then at Equations (10.2-25) and (10.2-29). We see that   is present in both   and 

 , but   is only a function of D , i.e. not C , and   is only a function of C  and not D . 

 

Design Demand = D  

Design Capacity = C  
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Figure 10.2-1 shows a plot of   versus  and C  . Figure 10.2-2 shows a plot of   versus 

 and D  . 

 
When looking at these two figures, recall that in classical code design format, the Capacity is 
calculated using less than expected values in many cases; thus a direct comparison of the results 
in these figures would require an in-depth study of the basis for the code equations and also the 
parameter values in the equations. A similar comparison would be required for Demand. 
 
Performance Based Design for Frequent Earthquakes and Wind Loads typically considers   

values of one or less. Consider the curves for 0.25  in Figure 10.2-1 and 10.2-2. The   values 

are always greater than 0.9 and the   values are always less than 1.1. But if 1.0  , then these 

limits for   and   change to ≈ 0.7 and 1.5, respectively. This shows for Frequent natural hazard 

exposure that the direct benefit to the client in reducing uncertainty in testing, analysis and 
construction quality control. This observation and conclusion is the same for 3   or 4  . 

 
Now let’s look at design using the Central Safety Factor pair of glasses. Equation (10.2-27) can be 
rearranged and expressed in terms of the Central Safety Factor and becomes 
 

 C

C

D





                     (10.2-30) 

 
This equation provides the structural engineer with, for a target value of  , the minimum value 

of the Central Safety Factor if failure of the limit state is to be avoided. Figures 10.2-3 to 10.2-6 
show a plot of the Central Safety Factor for different values of Reliability Index, Coefficient of 
Variation of Demand, and Coefficient of Variation of Capacity.  Tables 10.2-1 to 10.2-6 provide 
values for the Central Safety Factor using Equations (10.2-25), (10.2-26), and (10.2-30). I have 

selected the D  values of 10%, 20%, 35% and 50% to correspond to the classification levels of 

Superior, Good, Fair and Poor from Table 1.4-1. If we look at Figure 10.2-4 on Table 10.2-4 and 

select a value of C  = 20%, i.e. Good, then for  = 3 the value of the Central Safety Factor is 

approximately 2.5. 
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Figure 10.2-1 Capacity Reduction Factor as a Function of Reliability Index and Capacity 

Coefficient of Variation (Log-Normal) 
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Figure 10.2-3 Central Safety Factor for 10%D   (Log-Normal) 

 

Figure 10.2-4 Central Safety Factor for 20%D   (Log-Normal) 
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Figure 10.2-5 Central Safety Factor for 35%D   (Log-Normal) 

 

Figure 10.2-6 Central Safety Factor for 50%D   (Log-Normal) 
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Table 10.2-5 Central Safety Factor for Reliability Index of 3.5 (Log-Normal) 

 
 

Table 10.2-6 Central Safety Factor for Reliability Index of 4 (Log-Normal) 

 

 

Coefficient of 
Variation of 
Demand (%) 

      

Coefficient of Variation of Capacity (%) 

  10 15 20 25 30 35 

10 1.69 1.93 2.20 2.51 2.86 3.26 

15 1.93 2.20 2.51 2.86 3.26 3.72 

20 2.20 2.51 2.86 3.26 3.72 4.24 

25 2.51 2.86 3.26 3.72 4.24 4.83 

30 2.86 3.26 3.72 4.24 4.83 5.51 

35 3.26 3.72 4.24 4.83 5.51 6.28 

40 3.72 4.24 4.83 5.51 6.28 7.16 

 

Coefficient of 
Variation of 
Demand (%) 

      

Coefficient of Variation of Capacity (%) 

  10 15 20 25 30 35 

10 1.82 2.12 2.46 2.86 3.32 3.86 

15 2.12 2.46 2.86 3.32 3.86 4.48 

20 2.46 2.86 3.32 3.86 4.48 5.21 

25 2.86 3.32 3.86 4.48 5.21 6.05 

30 3.32 3.86 4.48 5.21 6.05 7.03 

35 3.86 4.48 5.21 6.05 7.03 8.17 

40 4.48 5.21 6.05 7.03 8.17 9.49 

 


